
Astrobee Robot Software: Enabling Mobile Autonomy on the ISS

Lorenzo Flückiger1, Kathryn Browne1, Brian Coltin1, Jesse Fusco2,
Theodore Morse1, Andrew Symington1

1 SGT Inc., NASA Ames Research Center, Moffett Field, CA, 94035
2 NASA, NASA Ames Research Center, Moffett Field, CA, 94035

Emails: lorenzo.fluckiger@nasa.gov; kathryn.browne@nasa.gov; brian.j.coltin@nasa.gov;

theodore.f.morse@nasa.gov; andrew.c.symington@nasa.gov

ABSTRACT

Astrobee is a new class of free-flying robots designed
to operate inside the International Space Station and per-
form surveying, monitoring, sensing and scientific tasks.
Astrobee’s capabilities include markerless vision-based
localization, autonomous docking and charging, perch-
ing on handrails to conserve energy, and carrying modular
payloads. Its open-source flight software runs on three in-
terconnected smart phone class processors and uses the
Robot Operating System. We present an architectural
overview of the software and discusses lessons learned
from its development. We highlight several projects al-
ready using Astrobee Robot Software to develop and test
novel research ideas.

1 INTRODUCTION

Astrobee is a new class of free-flying robots (see
Fig. 1) developed by NASA to perform a range of func-
tions inside the International Space Station (ISS). Three
Astrobees and a supporting dock will be launched to the
ISS in late 2018.

Astrobee packs a tremendous range of sensing, com-
puting and actuation capabilities into a one foot cube [1].
The open-source Astrobee Robot Software1 drives these
capabilities, running on three interconnected processors
and interfacing with seven micro-controllers, six cameras,
a propulsion system providing holonomic motion, and nu-
merous other peripherals. This software localizes and nav-
igates safely, autonomously docks and recharges, perches
on handrails to conserve energy, accommodates exter-
nal researchers’ software, and more. The Robot Operat-
ing System (ROS) handles internal communication while
the Data Distribution Service (DDS) communicates exter-
nally. The Astrobee Robot Software includes a Gazebo-
based simulator and tools for building and deploying to
embedded processors. In this paper, we describe the
objectives and requirements driving the Astrobee Robot
Software’s design, the implementation approach, and the
lessons learned from development.

1Available online: https://github.com/nasa/astrobee

Figure 1. : A rendering of Astrobee in the ISS.

We take advantage of algorithms for robots on Earth,
but also address challenges unique to the ISS:
• The unconventional location of and limited space

within the ISS preclude localization techniques that
exploit beacons, satellite navigation systems or
Earth’s gravity and magnetic fields.

• The ISS provides high bandwidth communications,
but has frequent signal loss and high latency.

• The software must maximize reliability to minimize
crew interventions.

• Astrobee robots are not serviceable by an expert
on orbit, and thus the system needs to support com-
pletely remote maintenance and introspection.

2 RELATED WORK

Terrestrial aerial robots must overcome Earth’s grav-
ity and therefore have reasonably different constraints to
free-flyers on the ISS. Nevertheless, they share similar
challenges with Astrobee in terms of packing computing
performance into lightweight form factors, localizing in
unstructured environments and path planning.

Originally inspired by AERCam [2] and PSA [3], the
SPHERES robots [4] are one of the most-used payloads on
the ISS, and they have supported numerous micro-gravity
research experiments over the last decade. The SPHERES
robots therefore have limited computational resources.
The SmartSPHERES [5] project extended SPHERES with
a smart phone, demonstrating what sort of capabilities

https://github.com/nasa/astrobee

Impeller (2x)

Nozzle (12x)

Laser Pointer

Speaker/Microphone
Battery

SciCam NavCam

HazCam

Touch Screen

Signal Lights

SpeedCam

DockCam

PerchCam

Aft Flashlight

Forward
Flashlight

2 x Free Flyer
berths with
connectors

Dock
Board

AR Target
Panel

Dock
Processor

Ethernet
and Power

Connectors

Inside:
HLP, MLP
and LLP
processors

Perching
Arm

Figure 2. : Rendering of Astrobee equipped with a perching arm, highlighting the key external hardware components.
On the right, the Astrobee dock (not to scale).

might be possible with a more powerful computing plat-
form. Astrobee builds upon this work, providing a new
class of free-flyer which provides substantially more com-
puting resources, a greater level of autonomy and a new
propulsion system that does not require CO2 tanks or bat-
tery packs to be replenished.

More recently, the JAXA Int-Ball has successfully de-
ployed a tele-operated free-flyer with remote camera ca-
pabilities [6]. Int-Ball is much smaller than Astrobee,
and contains a miniaturized fan-based propulsion system
that is commanded from a ground station. CIMON from
DLR [7] is about Astrobee size, with a focus on deliver-
ing AI capabilities to assist Astronauts. Both Int-Ball and
CIMON are currently designed to be permanently over-
seen by the ISS crew and are limited to operate in a single
module.

It is worth noting that although NASA’s Robonaut [8]
is strictly not a free-flyer, the fact that it operates in the
ISS means that is shares similar hardware, software and
functional challenges with Astrobee. Robonaut uses ROS
nodes deployed on multiple computers and relies on a vi-
sion system to perform tasks like grasping handrails.

3 THE ASTROBEE PLATFORM

The primary goal of Astrobee is to enable new re-
search aboard the ISS: not only taking advantage of the
unique environment without gravity, but also to study the
role of robotics for space exploration. Astrobee is in-
tended to support:

Research Platform: Enabling research partners to con-
duct scientific experiments in micro-gravity by de-
veloping their own software and/or payloads.

Autonomous Surveyor: Carrying payloads to perform
spatial surveys of the environment. For example, an
assessment of air quality or noise levels.

Mobile Camera: Permitting ground controllers to moni-
tor crew operation with a high quality video stream.

The key software tasks required to support Astrobee’s
functions include:

• Localize throughout the U.S. Orbital Segment of the
ISS without extra infrastructure.

• Precisely plan and execute motions without collision.

• Provide control and monitoring from the ground with
resilience to communication loss.

• Support multiple control modes, including remote
teleoperation, autonomous plan execution and on-
board control by guest science (external researchers)
software.

• Autonomously dock for battery recharging and wired
communications.

• Autonomously perch on handrails to conserve energy
while providing pan/tilt camera functionality.

• Manage guest science software, hardware payloads,
and user interface components.

• Provide a control station application to command and
monitor the Astrobee robot remotely (not addressed
in this paper).

3.1 Hardware
Three Astrobees and one dock (see Fig. 2) will be de-

livered to the ISS. Astrobee may mate to one of two berths
on the dock in order to obtain power and wired connectiv-
ity. Between the two berths is a fiducial marker comprised
of a collection of augmented reality tags, which helps pro-
vide finer localization accuracy during docking. The dock
is also equipped with a smartphone class ARM processor
that monitors the robots’ status when on dock and pro-
vides a mechanism for upgrading flight software.

Astrobee is equipped with three smartphone class
ARM processors that communicate over an Ethernet net-
work as shown on Fig. 5. The “Low Level Processor”
(LLP) runs the pose estimator and control loop, and com-
municates with key hardware like the inertial, propulsion,

Figure 3. : Astrobee prototype on a granite table (left) for testing mobility in two dimensions, and simulated Astrobee
model inside a virtual ISS (right) for testing mobility in three dimensions.

SpeedCam2 and power management systems. The “Mid
Level Processor” (MLP) is responsible for computer vi-
sion and mapping algorithms. Thus, the MLP is con-
nected to two color cameras (NavCam and DockCam) and
two depth cameras (HazCam and PerchCam). The MLP
is also responsible for high-level control execution, man-
aging faults and communication with the ground station.
The “High Level Processor” (HLP) is dedicated to running
guest science applications developed by research partners.
The HLP also manages the human-robot interaction de-
vices like the SciCam, touchscreen, speaker and micro-
phone. The sensors and actuators locations are shown in
Fig. 2.

Motion is achieved using 12 thrusters placed on two
propulsion modules that sandwich the core computing
module. Each propulsion module uses a battery-powered
impeller to draw air in through a central intake, where it
lightly pressurizes a plenum, providing air flow for six
variable-flow-rate nozzles. The design using only two
large impellers minimizes the sound level, but causes
other control challenges like a latency of several seconds
to achieve the desired fan rotation rate at startup.

Astrobees are nominally equipped with a perching
arm that enables grasping of ISS handrails, transforming
the robot into a remote pan-tilt camera.

4 SOFTWARE ARCHITECTURE

Astrobee relies on a modern software architecture:
the system is composed of a set of modular, distributed,
and loosely-coupled components. This is implemented in
practice by ˜46 ROS nodelets3. The nodelets are grouped

2The SpeedCam independently enforces that the velocity of the plat-
form stays within safety limits.

3From the ROS manual: “nodelets are designed to provide a way to
run multiple algorithms on a single machine, in a single process, without
incurring copy costs when passing messages intraprocess”.

into ˜14 processes running across multiple CPUs. De-
pendencies between nodelets are kept to a minimum by
strongly-defining their responsibilities and interface mes-
sages, services and actions. Fig. 6 shows the distribution
of the main components on the Astrobee processors.

The LLP and MLP run Ubuntu 16.04 because of its
widespread use and the availability of software packages,
notably ROS. The HLP processor, however, runs Android
(Nougat 7.1) because it is the only OS supporting some
key hardware for Astrobee (the high resolution camera,
video encoder and touchscreen). Android allows for the
encapsulation of guest science software for the HLP as
Android Packages (APKs), avoiding custom deployment
and management methods. Astrobee does not require any
real-time kernel extensions, since the control loop runs at
a relatively low frequency of 62.5Hz. Actual servo and
motor control is achieved with dedicated microcontrollers.

Software development is carried out in a virtual en-
vironment and code is first tested against a simulator (see
right side of Fig. 3) before being cross-compiled and de-
ployed to a prototype robot (see left side of Fig. 3) that
operates on a granite table. The Astrobee Robot Software
is mostly written in C++ because of its high-level con-
structs, ROS support, and runtime performance.

4.1 Communication Middleware
The various Astrobee software components rely

solely on the ROS communication framework to exchange
information. ROS messages are used for data distribution,
ROS services for simple instantaneous requests (i.e., turn-
ing a light on/off), and ROS actions for complex longer
operations (i.e., a motion that has an indefinite duration).
The use of ROS nodelets and judicious grouping of large
data producers and their consumers permits zero-copy
message passing. For example, the camera drivers pass
images to the vision algorithms without going through the
network layer. The nodelet concept is so essential to the
Astrobee that we developed our own specialization that

augments nodelet functionality with unified message nam-
ing scheme, lifecycle control for the nodelet, a heartbeat
mechanism, and fault management. These features, which
are typically expected of reliable space software, are thus
automatically available to all components.

Communication between one Astrobee and the out-
side world – either to a control station or another Astrobee
– does not rely on ROS. Instead, RAPID [9] and the Data
Distribution Service (DDS) are used. RAPID has a her-
itage of controlling robots on Earth from space [10] and
robots in space from Earth [5], while DDS allows for a
much finer control of the bandwidth usage and offers delay
tolerance through Quality Of Service (QoS) extensions.
These QoS capabilities combined with autonomy enables
reliable tele-operation over degraded networks [11].

4.2 Command Interfaces
Astrobee offers the following command interfaces

that can be mixed during a single session:

Tele-operation from a control station located at either
ground control or on-board the ISS.

Autonomous execution of a planned action sequence,
uploaded from either ground control or the ISS.

Guest scientist control of the robot’s behavior by an An-
droid application running on the HLP.

To support the multiple control interfaces we use a
common command dictionary. This dictionary is pro-
cessed by translators that create a set of DDS commands
(using the RAPID framework) to support external opera-
tor control, and a Java application programmer interface
(API) for guest scientists. Fig. 4 illustrates how com-
mands and telemetry flow to and from the Astrobee Robot
Software.

HLP

DDS Bridge

Operator Access
Control

Executive

SubsystemSubsystemSubsystems

Guest Science
App (HLP)Control

Station

ROS messages

ROS
messages

RAPID Commands
(DDS)

RAPID Msgs
(DDS)

ROS
“Command”

ROS
“Command”

Services, Actions
or Topics (all ROS)

MLP
LLP

ISS or Ground

Figure 4. : Unified Command and Telemetry within
Astrobee core system (LLP and MLP) and external

applications (Control Station and/or HLP).

4.3 Remote Upgrade Mechanism
Astrobee software and firmware will periodically

need to be updated on-orbit without astronaut support or
external equipment. All the microcontrollers run a cus-
tom bootloader that allows firmware to be safely updated

from the host processor. The HLP processor running An-
droid is updated via network from the MLP using Android
fastboot. The MLP and LLP processors have a more com-
plex update mechanism using a rescue partition that is up-
dated by a wired network connection to the dock. The
Linux image creation for the ARM processors is based on
a set of custom tools that guarantee consistency between
the development environment and the images running on
the embedded processors. For reliability purposes, the
MLP and LLP use a read-only file-system with robot-
specific customizations, like IP addresses and hardware
serial numbers, applied using an overlay partition. The
update mechanism requires a complex network, coupled
with elaborate routing and firewalls shown in Fig. 5.

4.4 Simulator
An essential part of the Astrobee Robot Software is

the simulator. The simulator enables Astrobee develop-
ers and guest scientists to test software before deploy-
ing it on a real robot. The simulator simulates the robot
propulsion system, perching arm, color and depth cam-
eras, inertial sensor, and environment. The simulator is
written as a set of plug-ins for the Gazebo robot simula-
tor. Each plug-in mimics the real hardware by offering the
same ROS interfaces (topics, services and actions) as the
real hardware driver. For example, ROS messages com-
manding the propulsion system are consumed by a custom
Gazebo plug-in that converts the commands into forces
and torques by a high fidelity model of the propulsion sys-
tem. The resulting forces and torques then in turn used by
Gazebo to compute the motion of the robot. An ISS CAD
model provides a visual environment for the simulator.

The simulator allows the control system to run at its
target rate and simulates realistic measurements for the
localization algorithms. The simulator can also run faster
than real-time (10 times speedup on a desktop computer
with a modern processor and graphics card). Our archi-
tecture allows users to transparently run all components
either in simulation or on the Astrobee, or as a mix of
simulation with hardware processor(s) in the loop.

4.5 Software Components
Fig. 6 show the main software components distributed

on the three processors.

4.5.1 Management
The executive filters incoming commands as a func-

tion of their source and the current operating mode (tele-
operation, plan execution or guest science). DDS com-
mands issued from the ground are transformed into ROS
commands by the DDS bridge (see Fig. 4). The DDS
bridge also subscribes to useful ROS messages for real
time monitoring, and transmits them to the ground at a
controllable rate as DDS messages.

The Astrobee Robot Software uses a distributed fault
management framework. Each subsystem is therefore re-

Astrobee Freeflyer Robot

Astrobee Dock

International Space Station, US Segment

Astronaut Laptop

NASA Ames Multi Mission Operation Center

Ground Computer

Other Centers (NASA or Guest)

Ground Computer

«Inforce 6601»
HLP
Android 7.1

Guest Science Apps
HRI Devices HLP

«wifi»

«Inforce 6501»
MLP
Ubuntu 16.04

Vision based localization
Mobility system
Obstacle detection
Executive
Faults Management
Color and Depth cameras

MLP

«wifi»

«Wandboard Dual»
LLP
Ubuntu 16.04

EFK
Motion Control
Hardware Devices

Network Switch

Astrobee

«eth»

«Wandboard Dual»
Dock Computer
Ubuntu 16.04

Docked Robots Mgt.
Software Repository
Software Update

Network Switch

Dock LAN

«eth»

Berth1

«eth»

Berth2

«eth»

ISS Payload LAN

AB Port

«eth»

ISS

«wifi»

Control Station

Ku‐Band

Ground
Antenna

Astrobee
Data
Storage

Control Station

Control Station

real

empty

space

Ground Networks

Figure 5. : Connectivity of Astrobee with the Dock and ISS network, including communication paths to the ground.
Control stations can be used from NASA control centers, from partner institutions or from the ISS by an Astronaut.

sponsible for detecting and communicating its local faults
to the system monitor. The system monitor uses informa-
tion encoded in heartbeats from other nodes to aggregate
fault information and responds according to a set of ac-
tions that are defined in the fault table.

The Astrobee Robot Software provides a common
framework to support and manage Guest Science appli-
cations developed by external users. The guest science
manager works in concert with the executive to control
the life-cycle of guest science applications. The guest sci-
ence library seamlessly integrates the guest science man-
ager and the guest science APKs. The Astrobee Java API
library encapsulates the command dictionary and allows
guest science APKs running on Android to harmoniously
communicate with the Astrobee flight software.

4.5.2 Localization
Astrobee’s localization relies on a pose estimator that

integrates measurements from a variety of sources de-
pending on the robot’s localization mode:

1. The general purpose localization uses the front-
facing NavCam with a wide 120◦ field of view. Vi-
sual features from a pre-built map of the ISS results
in a nominal position error lower than 5 cm.

2. When docking, Astrobee uses the aft-facing Dock-
Cam with a 90◦ field of view. The AR markers posi-
tioned on the dock allow a reduction in the localiza-

tion error to a sub-centimeter level.

3. For perching on handrails, Astrobee uses the Perch-
Cam depth camera. 3D features are extracted from
the point cloud and fed to the pose estimator [12].

Additionally, a visual odometry algorithm tracks fea-
tures across a history of images to improve localization
stability. See [13] for further details about Astrobee’s lo-
calization algorithm.

4.5.3 Control
Astrobee’s motion control subsystem runs on the LLP.

By limiting the number of processes running on the LLP,
closed-loop control has a jitter well below the accepted
tolerance. The control subsystem is developed using
Simulink. C++ code is auto-generated with the Simulink
buses being mapped to input/output data structures. The
auto-generated code is wrapped into ROS nodes, so that
it integrates seamlessly with the rest of the system. The
parametrization of the control models uses the same con-
figuration files that are used natively throughout the rest
of the Astrobee Robot Software. This method allows As-
trobee to easily translate the expertise of control domain
experts into the ROS ecosystem.

The control subsystem includes three main compo-
nents that are connected by ROS interfaces:

1. An Extended Kalman Filter (EKF) that implements
the pose estimator described above.

2. A Control (CTL) loop that calculates a desired
force/torque that drives the estimated state towards
the goal state.

3. A Force Allocation Module (FAM) that translates
forces and torques to propulsion nozzle commands.

This decomposition allows advanced users to replace
a single component (typically CTL) with their own algo-
rithms, while still benefiting from the other components.

4.5.4 Mobility
The mobility subsystem is responsible for planning,

executing and monitoring all free-flyer motion. Trajecto-
ries can be synthesized on the ground using the control
station, or calculated on-board using trajectory planners.
The system uses a plug-in architecture to switch between
path planners. The default trapezoidal path planner gener-
ates straight-line trajectories with trapezoidal angular and
linear velocity ramps. One may also add an optional face-
forward condition, which ensures the robot always faces
forward as it moves. This condition ensures that the depth
camera faces in the direction of motion, which enables the
robot to ”see” upcoming collisions over short horizons. A
second Quartic Polynomial (QP) planner creates smooth,
optimal trajectories around obstacles [14] and can be se-
lected at runtime without affecting the rest of the system.
The QP planner is appropriate for elaborate moves in free
space, but not necessarily for simple linear moves that are
required for docking or perching.

The mobility subsystem is also responsible for detect-
ing obstacles. The mapper uses OctoMap [15] to build an
octree-based occupancy map by fusing the HazCam depth
camera with pose estimates. It then validates trajecto-
ries against this map and predefined keep-in and keep-out
zones for each mission scenario.

5 LESSONS LEARNED

5.1 Balancing Research with Deliverables
Many components of the Astrobee Robot Software,

such as the localization and planning algorithms, are novel
in the field of robotics and are therefore the outcome of
significant research. The innovative nature of the contri-
bution means that work itself is unbounded – there are
many research directions that might lead to an incremen-
tal performance improvement. Balancing the requirement
to deliver a product with the desire to explore further re-
search avenues is challenging.

5.2 Hardware Constraints
Astrobee, and in particular its propulsion system, is

designed in-house across several groups at NASA using a
combination of off-the-shelf and bespoke hardware. De-
veloping hardware as a series of prototypes in lock-step
with software necessitates communal access, which re-
quired careful planning and coordination.

Function Coder Eigen Improvement
of residual and h 87.0 s 2.0 s 98% (43x)
delta state and cov 22.5 s 3.5 s 84% (6x)
covariance multiply 18 s < 2 s 89% (˜10x)

Table 1. : Performance of some time consuming
functions using the Mathworks Simulink Coder

compared to hand written code using the Eigen library.
The times are totaled over the run of a recorded data set.

Furthermore, as a result of design constraints and
hardware availability, the processing modules4 within As-
trobee differ from one another, with the exception of the
LLP and dock processor. Even though various boards’
kernel versions match, numerous customizations were re-
quired for each module. In addition, Astrobee runs both
Linux and Android which forces the team to acquire ex-
pertise with two development environments and create
different tools to maintain each system. This heterogene-
ity taxes software development effort.

Finally, the pace of the smartphone industry is much
faster than that of a project like Astrobee, which spans
multiple years. Products like processors and cameras be-
come obsolete before the project is mature enough to com-
mit to acquisition in sufficient quantities. This forces nec-
essary software adaptations, which cost substantial time.

5.3 Software Optimization
The use of an embedded computing platform for com-

putationally intensive algorithms necessitates optimiza-
tion. For example, we replaced certain auto-generated
Simulink C code with equivalent Eigen [16] implementa-
tions, which led to drastic performance increases which
we show in Table 1. This is possible because Eigen
exploits the accelerated NEON instruction set on ARM,
whereas Simulink does not.

The MLP also offers a Graphical Processing Unit
(GPU) that may be used to optimize other parts of flight
software. Image processing algorithms are typically well-
suited to this type of hardware acceleration. Unfortu-
nately, drivers for this GPU are not currently available for
Linux. However, in the future, we will consider using the
GPU to improve performance.

5.4 Open Source Licensing
Astrobee is built using many open source libraries,

and it has always been the project’s intention to release
Astrobee Robot Software under the Apache 2 license.
The Intelligent Robotics Group’s (IRG) push for open-
source releases, coupled with NASA’s contributions to the
Open Source Robotics Foundation (OSRF) – the organi-
zation responsible for maintaining both ROS and Gazebo
– demonstrates a commitment to engaging with a wider

4A processing module contains a CPU, GPU, memory and peripher-
als like I2C, USB and network adapters.

HLP MLP

LLP

guest science

manager

guest sience

APKs (multiple)

drivers (UI)

HD Camera

Touchscreen

Speaker/Mic

executive
dds_bridge

sys_monitor

localization

sparse_map

ar_targets

handrail

mobility

choregrapher

validator

obstacle_detection

planners

nav_cam

dock_cam

perch_cam

haz_cam
control

EKF CTL FAM

propulsion

IMU

drivers (peripherals)

power_system

status_lights

signal_lights

flashlights

laser

Figure 6. : The main software components running on Astrobee. The components on this diagram represent logical
groupings normally composed of multiple ROS nodelets. The arrows indicate dependencies, not flow of information.

Brown color represent drivers and purple external software.

community of developers.
The rigorous NASA open source process requires

flight projects to be reviewed a comprehensive set of re-
quirements [17]. The process however enables all exist-
ing or potential users of the Astrobee platform to view the
code without signing licensing contracts with NASA.

5.5 External Users
The use cases below show how existing Astrobee

Robot Software users are interfacing with the system.

5.5.1 Pure Simulation
The MIT Zero Robotics [18] competition enables

thousands of students ages 12-18 from 18 countries to
write code that controls robots on the ISS. ZR is transition-
ing from using the SPHERES free-flyer to the Astrobee
free-flyer. In the first phase of the transition, ZR will de-
velop a game framework using the Astrobee simulator and
the Astrobee Java API without an Android system.

5.5.2 Control Algorithms
The Naval Postgraduate School in Monterey (NPS) is

developing control algorithms for spacecrafts [19]. One
goal of the NPS work is to enable zero gravity ’astro-
batics’, where a free-flyer with an arm can throw itself
from handrail to handrail without using any propellant. In
this scenario, the researchers replace the Simulink control
with their own model. NPS also contributed an additional
Gazebo plugin to handle the perching mode of Astrobee.

5.5.3 Hardware Payload
The REALM team at NASA JSC is developing a radio

frequency identification (RFID) system for autonomous
logistic management [20]. The REALM-2 RFID reader
payload, leveraging Astrobee’s motion capability, can pin-
point the location of lost items by monitoring RFID signal
strength variations. REALM-2 will become Astrobee first
hardware payload. For this scenario, the REALM team

is developing a guest science application running on the
HLP. To develop their system before the final Astrobee
becomes available, the team acquired a HLP development
kit to which they connect their hardware payload. The
HLP development kit can be connected to a computer run-
ning the Astrobee simulator. This setup offers high fidelity
testing with hardware in the loop.

6 CONCLUSION

The Astrobee Robot Software manages a powerful
and complex hardware platform. Adopting both ROS and
DDS as middleware enables us to build upon well-tested
robotics tools while also respecting the unavoidable net-
work constraints imposed by space. That being said, in
the future we hope to transition to ROS-2, which by de-
fault uses DDS as a transport layer. Embracing ROS
provides a reliable distributed system that integrates with
reusable tools like Gazebo. We demonstrated that a prop-
erly crafted ROS based software system delivers a benefi-
cial solution for an embedded robotic platform. The soft-
ware update and network infrastructure for the Astrobee
project is key for space deployment and maintenance and
required substantial effort. The Astrobee robot prototype
has been operated numerous hours without being ham-
pered by the lack of real time operating system.

The software components developed enable:

• Markerless localization and navigation.

• Support for remote and on-board commanding, exe-
cution and monitoring of the robot.

• The ability to execute guest science applications that
use a common interface to flight software.

• Flexible and efficient management of hardware re-
sources with ROS enabled drivers.

• Faster than real time Gazebo simulation using plug-
ins that mimic the real hardware.

The Astrobee Robot Software has been released as an
open source project under an Apache 2 license. Not only
does this enable guest scientists to develop experiments
for Astrobee, but members of the public to obtain, test
and potentially contribute back to the project. Three As-
trobee robots will be commissioned onboard ISS in late
2018, and already more than 40 groups have expressed
interest in using Astrobee. It is our hope that Astrobee
Robot Software helps lower the barrier to experimenting
with a new class of free-flying robot in microgravity, and
enables exciting new research directions.

More information about the Astrobee project, includ-
ing videos and the guest science guide, is available
at: https://www.nasa.gov/astrobee

References

[1] Trey Smith et al. “Astrobee: A new platform for
free-flying robotics on the international space sta-
tion”. In: International Symposium on Artificial
Intelligence, Robotics, and Automation in Space
(iSAIRAS). 2016.

[2] Trevor Williams and Sergei Tanygin. “On-orbit
engineering tests of the AERCam Sprint robotic
camera vehicle”. In: Spaceflight mechanics 1998
(1998), pp. 1001–1020.

[3] Gregory A Dorais and Yuri Gawdiak. “The per-
sonal satellite assistant: an internal spacecraft au-
tonomous mobile monitor”. In: Aerospace Confer-
ence, 2003. Proceedings. 2003 IEEE. Vol. 1. IEEE.
2003, pp. 1–348.

[4] Swati Mohan et al. “SPHERES flight operations
testing and execution”. In: Acta Astronautica 65.7-
8 (2009), pp. 1121–1132.

[5] Mark Micire et al. “Smart SPHERES: a Telerobotic
Free-Flyer for Intravehicular Activities in Space”.
In: AIAA SPACE 2013 Conference and Exposition.
2013, p. 5338.

[6] JAXA. First disclosure of images taken by the
Kibo’s internal drone ”Int-Ball”. url: http : / /
iss.jaxa.jp/en/kiboexp/news/170714_

int_ball_en.html (visited on 07/14/2017).

[7] DLR. CIMON - the intelligent astronaut assistant.
url: http : / / www . airbus . com / newsroom /
press- releases/en/2018/02/hello-- i-

am-cimon-.html (visited on 03/02/2018).

[8] Julia Badger et al. “ROS in Space: A Case Study on
Robonaut 2”. In: Robot Operating System (ROS).
Springer, 2016, pp. 343–373.

[9] Hans Utz et al. The Robot Application Program-
ming Interface Delegate Project. url: http : / /
robotapi . sourceforge . net / index . html

(visited on 05/01/2013).

[10] Maria Bualat et al. “Surface telerobotics: devel-
opment and testing of a crew controlled planetary
rover system”. In: AIAA Space 2013 Conference
and Exposition. 2013, p. 5475.

[11] Lorenzo Flückiger and Hans Utz. “Service Ori-
ented Rbotic Architecture for space robotics: de-
sign, testing, and lessons learned”. In: Journal of
Field Robotics 31.1 (2014), pp. 176–191.

[12] Dong-Hyun Lee et al. “Handrail detection and pose
estimation for a free-flying robot”. In: International
Journal of Advanced Robotic Systems 15.1 (2018),
p. 1729881417753691.

[13] Brian Coltin et al. “Localization from visual land-
marks on a free-flying robot”. In: Intelligent Robots
and Systems (IROS), 2016 IEEE/RSJ International
Conference on. IEEE. 2016, pp. 4377–4382.

[14] Michael Watterson, Trey Smith, and Vijay Kumar.
“Smooth trajectory generation on SE (3) for a free
flying space robot”. In: Intelligent Robots and Sys-
tems (IROS), 2016 IEEE/RSJ International Confer-
ence on. IEEE. 2016, pp. 5459–5466.

[15] Armin Hornung et al. “OctoMap: An Efficient
Probabilistic 3D Mapping Framework Based on
Octrees”. In: Autonomous Robots (2013). Software
available at http://octomap.github.com. doi:
10 . 1007 / s10514 - 012 - 9321 - 0. url: http :
//octomap.github.com.

[16] Eigen Overview. url: http : / / eigen .
tuxfamily . org / index . php ? title = Main _

Page#Overview (visited on 03/20/2018).

[17] NASA. NASA Software Engineering Requirements,
NPR 7150.2B. url: https://standards.nasa.
gov/standard/nasadir/npr-71502 (visited on
11/19/2014).

[18] Sreeja Nag, Jacob G Katz, and Alvar Saenz-Otero.
“Collaborative gaming and competition for CS-
STEM education using SPHERES Zero Robotics”.
In: Acta astronautica 83 (2013), pp. 145–174.

[19] Josep Virgili-Llop et al. “Convex optimization for
proximity maneuvering of a spacecraft with a
robotic manipulator”. In: AAS/AIAA Astrodynamics
Specialist Conference. 2017.

[20] Patrick W Fink et al. “Autonomous Logistics Man-
agement Systems for Exploration Missions”. In:
AIAA SPACE and Astronautics Forum and Expo-
sition. 2017, p. 5256.

https://www.nasa.gov/astrobee
http://iss.jaxa.jp/en/kiboexp/news/170714_int_ball_en.html
http://iss.jaxa.jp/en/kiboexp/news/170714_int_ball_en.html
http://iss.jaxa.jp/en/kiboexp/news/170714_int_ball_en.html
http://www.airbus.com/newsroom/press-releases/en/2018/02/hello--i-am-cimon-.html
http://www.airbus.com/newsroom/press-releases/en/2018/02/hello--i-am-cimon-.html
http://www.airbus.com/newsroom/press-releases/en/2018/02/hello--i-am-cimon-.html
http://robotapi.sourceforge.net/index.html
http://robotapi.sourceforge.net/index.html
http://octomap.github.com
http://dx.doi.org/10.1007/s10514-012-9321-0
http://octomap.github.com
http://octomap.github.com
http://eigen.tuxfamily.org/index.php?title=Main_Page#Overview
http://eigen.tuxfamily.org/index.php?title=Main_Page#Overview
http://eigen.tuxfamily.org/index.php?title=Main_Page#Overview
https://standards.nasa.gov/standard/nasadir/npr-71502
https://standards.nasa.gov/standard/nasadir/npr-71502

	Introduction
	Related Work
	The Astrobee Platform
	Hardware

	Software Architecture
	Communication Middleware
	Command Interfaces
	Remote Upgrade Mechanism
	Simulator
	Software Components
	Management
	Localization
	Control
	Mobility

	Lessons Learned
	Balancing Research with Deliverables
	Hardware Constraints
	Software Optimization
	Open Source Licensing
	External Users
	Pure Simulation
	Control Algorithms
	Hardware Payload

	Conclusion

